
Eurographics Symposium on Geometry Processing 2020
Q. Huang and A. Jacobson
(Guest Editors)

Volume 39 (2020), Number 5

EGGS: Sparsity-Specific Code Generation

Xuan Tang1, Teseo Schneider1, Shoaib Kamil2, Aurojit Panda1, Jinyang Li1, and Daniele Panozzo1

1 New York University 2 Adobe Research

EGGSSparse Algebra

Smoothing

Parameterization

Abstract

Sparse matrix computations are among the most important computational patterns, commonly used in geometry processing,

physical simulation, graph algorithms, and other situations where sparse data arises. In many cases, the structure of a sparse

matrix is known a priori, but the values may change or depend on inputs to the algorithm. We propose a new methodology for

compile-time specialization of algorithms relying on mixing sparse and dense linear algebra operations, using an extension

to the widely-used open source Eigen package. In contrast to library approaches optimizing individual building blocks of a

computation (such as sparse matrix product), we generate reusable sparsity-specific implementations for a given algorithm,

utilizing vector intrinsics and reducing unnecessary scanning through matrix structures. We demonstrate the effectiveness of

our technique on a benchmark of artificial expressions to quantitatively evaluate the benefit of our approach over the state-of-

the-art library Intel MKL. To further demonstrate the practical applicability of our technique we show that our technique can

improve performance, with minimal code changes, for mesh smoothing, mesh parametrization, volumetric deformation, optical

flow, and computation of the Laplace operator.

1. Introduction

Linear algebra operations are at the foundation of most scientific
disciplines: Due to their importance, countless approaches have
been proposed to improve the performance of their implementation,
both on traditional processors and on graphical processing units. In
existing implementations, sparse linear algebra operations are han-
dled similarly to their dense counterparts: Every elementary op-
eration (such as matrix product, matrix sum, etc.) is implemented
in an individually-optimized function/kernel. Unfortunately, while
dense linear algebra kernels have many opportunities for vector-
ization and parallelization, efficiently executing their sparse linear
algebra counterparts is challenging. This is because the data struc-
tures for sparse matrices require iterating through multiple index

arrays in order to access the non-zeros elements. Doing so results
in irregular memory access that depends on the sparsity pattern of
the input/output matrices, that is, on the location of non-zero ele-
ments. Consequently, sparse kernels often lead to complex imple-
mentations that are hard to optimize.

In this paper, we propose a new computational paradigm for
generating efficient kernels for linear algebra expressions or algo-
rithms working on sparse inputs, including sparse linear algebra
and sparse matrix assembly. Our proposed approach is motivated
by two optimization opportunities that are missing from existing
implementations.

First, it is common in applications to have the sparsity pattern
of input/output matrices remain the same while the actual values of

submitted to Eurographics Symposium on Geometry Processing (2020)

2 X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation

non-zero elements change during the computation. We can generate
an efficient implementation by specializing it to a specific sparsity
pattern of inputs/outputs. Existing implementations do not perform
such specialization. A few libraries (e.g., MKL’s 2-stage routines)
offer an option to dynamically evaluate the sparsity pattern, caching
intermediate results to reduce the runtime. However, the sparsity
pattern is only used in a limited fashion (e.g., for memory alloca-
tion) and there is no code generation and specialization.

Second, applications typically need to combine multiple oper-
ations together into linear algebra expressions (e.g., AT DA +C).
However, existing implementations use a separate kernel for each
operation, incurring the overhead of writing intermediate matrices
to main memory and reading them back later. As memory band-
width is the bottleneck resource in sparse computation, we can
achieve large performance gains by generating a kernel implemen-
tation that composes multiple operations together.

To generate sparsity-specific, composed implementations, we
unroll arbitrary linear algebra expressions (or even algorithms) into
expression trees, one for each non-zero element of the final out-
put, generate and compile a kernel for that specific expression. The
structures of the expression trees are determined by the sparsity
pattern of inputs and we specialize the generated code according to
these tree structures, resulting in unstructured, but fixed, set of op-
erations performed on dense vectors. These operations can be opti-
mized during the compilation, do not require memory allocation for
temporaries, and can be trivially parallelized over multiple threads.
With this approach, the unnecessary iteration through sparse matrix
data structures is completely eliminated, and no intermediate matri-
ces are created, reducing the problem to an unstructured, but fixed,
set of operations performed on dense vectors. Such an approach is
particularly beneficial for iterative computation, as the cost of code
generation can be amortized across multiple iterations as the spar-
sity patterns of matrices remain unchanged across iterations.

We extensively compare our CPU implementation of this ap-
proach, which we call EGGS, against the state-of-the-art commer-
cial Intel Math Kernel Library (MKL) [Int12], both on single ex-
pressions (Section 4) and on complete algorithms (Section 5). We
evaluate its scaling with respect to the size of the matrices, their
sparsity, and the length/complexity of the expressions. Overall, our
prototype implementation is faster by a factor of 2× – 16× de-
pending on the specific expression, both in single and multithreaded
mode. The downside is that the setup cost to prepare the expression-
specific kernel is longer than MKL, making it competitive in appli-
cations where the same operation is evaluated multiple times with
the same sparsity structure. These applications are common in sci-
entific computing, geometry processing, and computer vision: We
showcase 4 such applications in Section 5, including geometric dis-
tortion minimization, optical flow, cotangent matrix assembly, and
smoothing. The complete source code of our reference implemen-
tation, the data used in the experiments, and scripts to reproduce
our results are available at https://github.com/txstc55/EGGS.

2. Related Work

Dense Linear Algebra Libraries & Compilers. A large num-
ber of libraries have been built for dense matrix computations for

shared memory machines [ABB∗99, WD98, GJ∗10, VDWCV11,
San10, Int12, WZZY13], both historically and in recent years due
to the proliferation of deep neural networks and their use of
dense matrix computations to perform convolutions. While many
such libraries are hand-written, automated techniques have be-
come more prevalent as the number of architectures and variants
have increased. PHiPAC [BAwCD97] pioneered the use of auto-
tuning [AKV∗14] to automatically generate and search over can-
didate implementations of linear algebra functions to find the best-
performing version, obtaining performance that matched or beat
hand-tuned vendor implementations.

Automatic parallelization and optimization of dense nested
loops, such as those found in linear algebra, motivate many
techniques used within general (non domain-specific) compil-
ers [Wol82, WL91, MCT96], including polyhedral transformation
techniques [Fea91, Fea88, IT88]. Recently, new special-purpose
compilers have arisen for dense linear and tensor algebra, due to
their use in convolutional neural networks, including compilers
for TensorFlow [ABC∗16, PMB∗19] and other dense tensor op-
erations [VZT∗18]. Build to Order BLAS [NBS∗15, BJKS09] is
a compiler for dense linear algebra that composes together user-
specified dense linear algebra operations and creates implementa-
tions using a combination of analytic modeling and empirical exe-
cution.

Sparse Linear Algebra Libraries. Compressed data structures,
including Compressed Sparse Row (CSR) and Compressed
Sparse Column (CSC) have existed for decades [TW67, McN71].
PETSc [BGMS97] is perhaps the most widely-used library for
sparse computations in scientific computing. More recently, dense
linear algebra libraries, including Eigen [GJ∗10] and MKL [Int12]
have also added sparse support, and are thus becoming increas-
ingly used for sparse computation. A sparse version of the BLAS
standard attempted to standardize the calling interfaces and func-
tionality of these libraries [DHP02] while hiding implementation
details of data structures. Like PHiPAC, the OSKI and pOSKI li-
braries [VDY05, BLYD12] pioneered the use of auto-tuning for
sparse linear algebra, but support very few computational kernels
and cannot compose them.

Sparse Linear Algebra Compilers. Early work in compiling
sparse linear algebra includes a series of papers by Bik and Wi-
jshoff [BW93, BW94] that transformed dense matrix code into
sparse matrix code. SIPR [PS99] is an intermediate representation
with a similar purpose. The key insight in Bernoulli [KPS97] was
that using the language of relational algebra could enable compil-
ers to generate efficient sparse matrix code. However, none of these
systems utilize sparsity structure to generate code tailored to par-
ticular inputs.

Polyhedral techniques have been applied to sparse linear alge-
bra [VHS15,MYC∗19,SHO18], using inspector-executor transfor-
mations, which modify the code to first use an inspector to deter-
mine parts of the matrix structure, and an executor to use the infor-
mation from the inspector to perform efficient computation. Most
related to our work, Cheshmi et al. use compile-time inspection fol-
lowed by sparsity specific code generation to create efficient im-
plementations of sparse direct solvers [CDKS18,CKSD17]. Unlike

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation 3

their work, we concentrate of generic sparse algorithms and com-
positions of linear algebra operations and maintain the interface
used by Eigen. Rodríguez and Pouchet [RP18, ASPR19] use poly-
hedral tracing to transform sparse matrix-vector multiply (SpMV)
into a series of dense affine loops and obtain nearly 30% perfor-
mance improvement despite making the code size much larger. In
contrast, we compose together operations that use sparse operands
(rather than only SpMV) and use a more naïve code generation
strategy that groups outputs by the structure of their computation
trees.

The Tensor Algebra Compiler project (taco), aims to build a
compiler for dense and sparse linear and tensor algebra that sup-
ports a large variety of sparse and dense data structures [KKC∗17,
KAKA19,CKA18]. Our approach could be integrated in taco, to al-
low it to generate sparsity-specific code. The current public version
of taco does not correctly support sparse outputs, making a direct
performance comparison impossible†.

Domain-Specific Languages for Sparse Graphics Applications.

Opt [DMZ∗17] is a domain-specific language for sparse non-linear
least-squares optimization problems, which can produce efficient
GPU code from high-level problem descriptions. Opt enables users
to produce matrix-free implementations, which avoid materializ-
ing full sparse matrices; like EGGS, such implementations do not
need to iterate through sparse structures. EGGS deals with more
general computations and can directly optimize existing code that
uses Eigen. However, it targets only CPU computation, while Opt
supports the generation of GPU kernels.

Simit [KKRK∗16] and Ebb [BSL∗16] are domain-specific lan-
guages that allow users to avoid complex indexing required to as-
semble matrices used in simulations. Programmers do not directly
perform assembly, but rather use local stencil operations that to-
gether form the (implicit or explicit) sparse matrix. EGGS deals
instead with general sparse computations, and maintains the idea
of explicit assembly while generating code that avoids unnecessary
computations.

3. Methodology

EGGS generates C++ code with vector intrinsics and parallelism for
general algorithms including linear algebra operations by overload-
ing the Eigen API. The code generation occurs in three major steps:
first, the programmer specifies an algorithm and its input (more
specifically, the sizes and sparsity structure of the input matrices)
using the Eigen API; then, EGGS executes the operations symbol-

ically; and finally, the results of symbolic execution are used to
generate optimized code. To use this code, the programmer needs
only fill the values arrays of the input matrices and vectors. The
overall algorithm is shown in Algorithm 1.

3.1. Symbolic Execution

EGGS implements a new datatype, SymbolicNum, which represents

† We communicated with Taco’s authors, who confirmed this shortcom-
ing in an issue on their public code repository https://github.com/

tensor-compiler/taco/issues/297.

Input: matrix operands Mi,
scalar operands c j,
expression Gin = E(M0, ..,c0, ..)
Result: generated code F

// Convert matrix/vector operands to abstract

matrices

// L is the computed set of all SymbolicNum leaves.

1 L←∅
2 foreach non-zero index i ∈ M j do

3 L← L∪{(i, j)}

4 end

// Perform overloaded operation using abstract

// inputs

// Entries of G are trees of operations

// with abstract input entries as leaves

5 G← E(M0, ...,c0, ..)
// Find unique output trees

6 T ← ∅
7 IO ← ∅
8 foreach Oi ∈ G do

9 O← Oi

10 idxs← []
11 foreach lea f (i,k) ∈ O do

// Replace concrete entry with wildcard.

// lea f is a reference to the entry

12 lea f ← (i,?)
// Append index to idxs list

13 idxs← idxs :: k

14 end

// Add wildcarded output tree to T

// if it doesn’t already exist in the set

15 T ← T ∪O

// Append idxs to list that corresponds

// to the wildcarded tree

16 IO ← IO :: idxs

17 end

// Generate code

18 foreach Ti ∈ T do

// k is the number of leaves in tree Ti

// |Ii| is the number of instances of that tree

19 F ← F :: codegen_loop(Ti, IO, |Ii|, k)
20 end

Algorithm 1: Overall algorithm for compiling a sparsity-specific
kernel using EGGS.

a symbolic tree of computations: the leaves of the tree are ei-
ther constants or entries of a matrix/vector. All other nodes of the
tree represent operations such as addition and multiplication. This
datatype is used instead of the usual value types (e.g., double and
float) in Eigen.

Before performing symbolic execution, EGGS replaces the val-
ues of an input by the corresponding SymbolicNum leaf (lines 2–4
in Algorithm 1). Each SymbolicNum leaf is a tuple consisting of
the variable name from which a value was read and the location
of the value within the variable. The location is the index of the

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

4 X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation

ROW

COL IDX

VALUES

0 1 2 4

1 0 1 2

7 6 3 9 A
0

A
1

A
2

A
3

Figure 1: Prior to symbolic execution, we transform the values ar-

ray of the CSR matrix A to contain symbolic entries corresponding

to the location in the array.

Figure 2: For C = AB with all sparse operands, we show the com-

putation trees after symbolic execution. In this example, only a sin-

gle uniquely-structured computation tree covers all outputs in C.

value: for dense vectors and matrices this is merely an offset from
the beginning. For sparse matrices, which are stored in compressed
sparse row (CSR) or column (CSC) forms, the location is an in-
dex into the values array. Figure 1 shows an example of this initial
transformation for a CSR matrix.

EGGS uses C++ operator overloading to intercept arithmetic op-
erations and perform symbolic execution. In order to minimize the
amount of memory required, EGGS stores SymbolicNum objects in
a memory pool and allows parent nodes to reference other subtrees
within the pool, instead of duplicating the subtrees.

EGGS use of C++ operator overloading allows it to piggyback
onto existing Eigen code for execution, allowing EGGS to imple-
ment symbolic execution in very few lines of code, and allowing it
to be used to accelerate existing C++ code that already uses Eigen
by simply changing the matrix template type. When the usual Eigen
functions finish execution, the result is a matrix, vector, or scalar of
SymbolicNum, which we process further to generate efficient code.
Figure 2 shows example computation trees for a sparse matrix mul-
tiplication.

3.2. Generating Efficient Code from Symbolic Results

EGGS generates a compute loop for each uniquely-structured com-
putation tree in the output structure. In this context, two trees are
equivalently-structured if they contain the same non-leaf nodes, the
number of leaves are equal, and the leaves load from the same input
arrays. If two result entries are equivalently-structured, we can use
the same compute loop in both cases, by simply changing which
entries of the input operands we use.

Identifying Uniquely-Structured Computation Trees. The pro-
cess for identifying unique computation trees is shown in lines 6–
17 of Algorithm 1. Iterating through the result array, EGGS first

void evaluate(const vector<size_t>& reordered_data_ids,

const vector<size_t>& reordered_result_pos,

const vector<vector<double>>& M,

vector<double>& result_vector){

tbb::parallel_for(size_t(0), size_t(4), size_t(2),

[&](size_t i){

__m128d v0 = {M[0][reordered_data_ids[i*2+0+0]],

M[0][reordered_data_ids[i*2+0+0+2]]};

__m128d v1 = {M[1][reordered_data_ids[i*2+0+1]],

M[1][reordered_data_ids[i*2+0+1+2]]};

__m128d v2 = _mm_mul_pd(v0, v1);

result_vector[reordered_result_pos[0+i]] = v2[0];

result_vector[reordered_result_pos[0+i+1]] = v2[1];

});

}

Figure 3: Generated parallel vectorized code for computing the

output sparse matrix C from Figure 2.

replaces each leaf of the tree with a wildcard, representing any
possible input location. After wildcard replacement, EGGS checks
whether the wildcarded tree already exists in the collection of
unique trees, and adds it if necessary. For the example in Figure 2,
only one unique computation tree is generated.

During this process, EGGS also builds an index list for each
unique tree (IO in line 16 of Algorithm 1). Since each tree has a
unique number of inputs, no additional information is required dur-
ing code generation; this index list can be used directly by consum-
ing the correct number of inputs during each call.

Generating Code. The final step outputs a single function that
computes the output sparse array. For each uniquely-structured tree,
EGGS generates a loop nest (lines 18–20) that computes the output
entries corresponding to that tree.

We rely on the compiler to pack inputs into vectors and to gener-
ate efficient code for storing vector lanes into output memory loca-
tions (see Section 3.3 for discussion). Producing the actual compu-
tation is straightforward: the code generator walks the wildcarded
symbolic computation tree, generating vectorized intrinsics per op-
eration. Figure 3 shows an example generated loop for the compu-
tation tree from Figure 2.

As shown in lines 18–20 of Algorithm 1, when EGGS gener-
ates code, it groups outputs by their unique computation tree; that
is, first all outputs with the first unique computation tree are com-
puted, followed by outputs using the second unique tree, and so
on. Within each loop nest for a specific computation tree, the out-
puts are grouped into vector-width-sized outputs per loop iteration,
in order to utilize vectorized computation code. Parallelism across
cores is introduced by using the Intel TBB [Phe08] library to paral-
lelize the per-tree compute loops. Thus, the generated code utilizes
both parallel execution and vectorization, without requiring any ad-
ditional effort from the user of our system.

Avoiding Redundant Computation. In some cases, multiple out-
puts may store the exact same value: two outputs may share not
just the structure of the computation tree, but also include the same

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation 5

leaf nodes. To avoid this redundant work, we pre-filter the set of
outputs to store the same computed value in multiple locations. A
more aggressive version could avoid even redundantly computing
sub-trees, but in our current version we only avoid redundant com-
putation if two trees are entirely equivalent.

Compressed Index Arrays. In addition to the output sparse val-
ues array, to generate a usable sparse CSR matrix EGGS must also
produce the row start and column index arrays (or the column start
and row index arrays if producing CSC output). Since these are al-
ready computed by Eigen when generating the code, EGGS embeds
them into the generated code directly.

3.3. Limitations

Fundamentally, EGGS does not support data-dependent operations,
such as those that arise in direct solvers for pivoting and other
operations. As a result, EGGS does not currently support Eigen’s
sparse solvers, which generally rely on values in the matrices for
making decisions such as pivoting. Instead, we expect most users
will use EGGS to generate sparsity-specific code for constructing
inputs to solvers, and to build code that operates on the solution
returned. Sparsity-specific approaches to solvers, such as those in
ParSy [CKSD17, CDKS18], are complementary to EGGS and can
be applied where they lead to speedup. As we show in Section 4,
EGGS maintains interoperability with existing Eigen solvers.

In the current implementation, we have not aggressively opti-
mized the memory usage: a single node in the tree requires approx-
imately 56 bytes, and each entry in the output is a tree made up of
multiple nodes in a global list. Furthermore, increasing the num-
ber of operands in the original expression makes it more likely that
each output tree is larger, resulting in large memory consumption
at compile time. While this limitation only affects the precomputa-
tion phase (the generated code is oblivious to the memory required
during its generation), it makes our system unable to generate code
for long expressions.

Relying on the compiler to produce efficient vector packing/un-
packing code may result in lower performance than if we generated
code with more efficient loads when the input locations are contigu-
ous. An alternative implementation would generate packed stores
directly; in order to do so, the computation trees for each of the
output locations in a vector must match as well as be contiguous.
We leave such an implementation for future work.

4. Results

We implemented our system as a C++ code generator, which
only requires using SymbolicNum as the basic numeric type of
Eigen. With this change, our system generates, compiles, and exe-
cutes an efficient kernel on-the-fly using the Clang compiler. Most
arithmetic operations are supported and, in particular, we support
sparse Eigen expressions as input, allowing us to generate highly-
optimized kernels for algorithms working on sparse matrices.

We use two sets of tests in order to evaluate the performance
of our approach. In Section 4.1, we compare our method on core
sparse matrix expressions supported by both Eigen and MKL,

showing that our method compares favorably to state of the art li-
braries. For all our core routines we use MKL two-stage computa-
tions; that is, the sparsity of the result of the operation is precom-
puted in a first stage (which we do not count in our measurements),
while the result is computed in a second stage. We remark that this
strategy, while similar to ours, can only be done for simple expres-
sions in MKL and is done at runtime. We then experiment with
compound expressions (Section 4.2) which are naturally supported
by our approach, while requiring combinations of basic operations
when using other libraries. Finally, we discuss integrating our algo-
rithm into practical applications in Section 5.

We run our experiments on a workstation with two 10-core In-
tel(R) Xeon(R) E5-2660 v3 CPUs @ 2.60GHz with 128GB of
memory and 50GB of swap space, running Linux kernel version
4.12.0 and Clang version 7.0.1-8. We compare both serial and par-
allel performance (limiting to 8 threads, which is the point of satu-
ration, after which adding more cores no longer increases perfor-
mance). To foster applicability of our approach and support the
replicability of our results, we include our reference implementa-
tion and a script to reproduce all results in the paper as part of the
supplemental material.

4.1. Core Routines

We perform a series of experiments using basic operations involv-
ing sparse matrix operands with sparse matrix outputs:

AB, A
T

DA, and A
T

A, (1)

where A,B are sparse matrices and D is a diagonal matrix.

For every test we generate a set of random input matrices, with 5
and 15 non-zero entries per row on average. In Figure 4 we compare
the speedup of our method with respect to both Eigen and MKL as
we change the size of the matrix and its density, while keeping the
number of non-zero entries per row constant. Both the number and
the positions of the non-zero entries are synthetic and targeted for
benchmarking purposes; we study EGGS’ performance on real ma-
trices in Section 5. The advantage of our method grows with ma-
trix size but is reduced as density increases. Speedup over Eigen is
massive even with EGGS in single-threaded mode (between 10× to
40×), and the speedup over the heavily-optimized MKL library (ig-
noring precomputation time for both EGGS and MKL) is between
3.5× (AB with 15 non-zeros per row for each input, 1M rows) and
15× (5 non-zero per row per input, 1M rows, for AT A) for sizes
and densities common in geometry processing applications. Par-
allelization further reduces running times (as shown in Figure 5),
providing an even larger advantage for our approach.

Figure 6 shows the time EGGS requires for precomputation, in-
cluding symbolic execution, code generation, and compilation. The
detailed preprocessing timings for all the experiments in the pa-
per are provided in Appendix A. This overhead demonstrates that
EGGS is suitable for operations that will be executed numerous
times, as the overhead is non-trivial. In Table 1 we collect all the
raw timings for AT A.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

6 X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation

Eigen
AB AT DA AT A

S
p

e
e

d
u

p

102 103 104 105 1060
10
20
30
40
50
60
70

Rows

103 1050
10
20
30
40
50
60
70

Rows

103 1050
10
20
30
40
50
60
70

Rows

S
p

e
e

d
u

p

102 103 104 105 1060
10
20
30
40
50
60
70

Rows

103 1050
10
20
30
40
50
60
70

Rows

103 1050
10
20
30
40
50
60
70

Rows

MKL
AB AT DA AT A

S
p

e
e

d
u

p

102 103 104 105 1060

4

8

12

16
Eight Threads Speedup
Single Thread Speedup

Rows

103 1050

4

8

12

16
Eight Threads Speedup
Single Thread Speedup

Rows

103 1050

4

8

12

16
Eight Threads Speedup
Single Thread Speedup

Rows

S
p

e
e

d
u

p

102 103 104 105 1060

4

8

12

16
Eight Threads Speedup
Single Thread Speedup

Rows

103 1050

4

8

12

16
Eight Threads Speedup
Single Thread Speedup

Rows

103 1050

4

8

12

16
Eight Threads Speedup
Single Thread Speedup

Rows

Figure 4: Speedup of our method for increasingly large matrices

compared with Eigen and MKL for the expressions in (1) for 5 (top)

and 15 (bottom) non-zero entries per row. We show single and 8

threads speedups.

AB AT DA AT A

S
p

e
e

d
u

p
O

ve
r

1
T

h
re

a
d

1 2 4 8 160
2
4
6
8

10
12
14
16

MKL
Ours

Number of Threads

1 2 4 8 160
2
4
6
8

10
12
14
16

MKL
Ours

Number of Threads

1 2 4 8 160
2
4
6
8

10
12
14
16

MKL
Ours

Number of Threads

S
p

e
e

d
u

p
O

ve
r

1
T

h
re

a
d

1 2 4 8 160
2
4
6
8

10
12
14
16

MKL
Ours

Number of Threads

1 2 4 8 160
2
4
6
8

10
12
14
16

MKL
Ours

Number of Threads

1 2 4 8 160
2
4
6
8

10
12
14
16

MKL
Ours

Number of Threads

Figure 5: Scaling results of our method compared with MKL for a

matrix 106×106 and 5 (top) and 15 (bottom) non-zeros per row.

AB AT DA AT A

T
im

e
(m

s
)

102 103 104 105 1060

5×104

1×105

Rows

102 103 104 105 1060

5×104

1×105

Rows

102 103 104 105 1060

5×104

1×105

Rows

T
im

e
(m

s
)

102 103 104 105 106
0

4×105

8×105

Rows

102 103 104 105 106
0

4×105

8×105

Rows

102 103 104 105 1060

4×105

8×105

Rows

Figure 6: Time needed to perform symbolic execution, code gener-

ation, and compilation of the kernel generated by our method, for

5 (top) and 15 (bottom) non-zeros per row.

ROWS 102 103 104 105 106

EIGEN ST 6.37e-2 1.42e0 3.11e1 5.94e2 1.29e4
MKL ST 2.50e-2 2.83e-1 4.15e0 4.78e1 1.84e3
MKL MT 3.02e-2 8.51e-2 8.93e-1 1.30e1 4.84e2
OURS PC 3.92e3 4.99e3 5.87e3 1.24e4 7.23e4
OURS ST 2.20e-3 4.29e-2 7.44e-1 1.62e1 3.35e2
OURS MT 4.77e-2 1.10e-1 2.84e-1 2.26e0 3.83e1

ROWS 102 103 104 105 106

EIGEN ST 3.38e-1 1.06e1 3.87e2 5.26e3 1.35e5
MKL ST 1.19e-1 1.63e0 1.92e1 3.50e2 8.10e3
MKL MT 4.74e-2 3.09e-1 4.23e0 7.66e1 1.67e3
OURS PC 1.01e4 1.37e4 1.94e4 6.60e4 5.26e5
OURS ST 2.09e-2 4.41e-1 8.38e0 1.20e2 1.94e3
OURS MT 1.15e-1 2.63e-1 1.35e0 1.56e1 2.38e2

Table 1: Timings in ms for AT A for 5 (top) and 15 (bottom) non-

zeros per row. By ST and MT we denote multi- and single-thread

performance and PC stands for precompute.

4.2. Composite Expressions

We study the relative performance of our method, MKL, and Eigen
on three composite expressions:

(αA+B)T (βB
T +C), ABC, and (A+B)(A+B+C), (2)

where A, B, and C are sparse matrices; α, β are scalars; and all out-
puts are sparse matrices. Figure 7 shows the speedup of our method.
Our current subtree elimination is unable to reuse common subex-
pressions, thus leading to more operations than what other libraries
perform, since those libraries can reuse intermediate results. De-
spite this, our method is still faster. We expect that the performance
for these expressions could be further improved by adding a more
aggressive policy for common subexpression elimination, which is
an interesting direction for future work (see Section 6).

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation 7

Eigen
(αA+B)T (βBT +C) ABC (A+B)(A+B+C)

S
p

e
e

d
u

p

103 104 1050
5

10
15
20
25

Rows

103 104 1050
5

10
15
20
25

Rows

103 104 1050
5

10
15
20
25

Rows

S
p

e
e

d
u

p

103 104 1050
5

10
15
20
25

Rows

103 104 1050
5

10
15
20
25

Rows

103 104 1050
5

10
15
20
25

Rows

MKL
(αA+B)T (βBT +C) ABC (A+B)(A+B+C)

S
p

e
e

d
u

p

103 104 1050

1

2

3

4
Eight Threads Speedup
Single Thread Speedup

Rows

103 104 1050

1

2

3

4
Eight Threads Speedup
Single Thread Speedup

Rows

103 104 1050

1

2

3

4
Eight Threads Speedup
Single Thread Speedup

Rows

S
p

e
e

d
u

p

103 104 1050

1

2

3

4
Eight Threads Speedup
Single Thread Speedup

Rows

103 104 1050

1

2

3

4
Eight Threads Speedup
Single Thread Speedup

Rows

103 104 1050

1

2

3

4
Eight Threads Speedup
Single Thread Speedup

Rows

Figure 7: Speedup of our method for increasingly large matrices

compared with Eigen and MKL for the expressions in (2) for 5 (top)

and 15 (bottom) non-zero entries per row. We show single and 8

threads speedups.

5. Applications

Integrating our technique in existing applications that already use
Eigen only requires minimal code changes. To demonstrate achiev-
able speedups in real applications, we selected a few open-source
applications and used our system to replace existing Eigen code
with optimized kernels. For all these applications, the only re-
quired change was to switch the numerical type from double to
SymbolicNum, in addition to the software engineering required
to interface our system with the codes. The source for all these
applications is available at https://github.com/txstc55/EGGS.
Note that, for fairness, we use the optimized Pardiso solver
[DCDBK∗16, VCKS17, KFS18] wrapper in Eigen for all linear
solves. In this section, we report the speedup with respect to the
end-to-end algorithm, including the parts that are not optimized by
our method, to provide a fair evaluation of the benefits that users
adopting our system can expect. In all these applications, the ratio
between matrix preparation (which we accelerate) and the linear
solve heavily depends on the problem size: the larger the problem,
the more dominant the solve time will be since it scales superlin-
early, while the matrix preparation scales linearly. In our experi-
ments, we show that the overall speedup is significant for problem

T
im

e
(m

s
)

EIGEN MKL OURS0

100

200

300

400

500
Solve
Compute
Assemble

EIGEN MKL OURS0

10000

20000
Solve
Compute
Assemble

#T = 51 712 #T = 827 392

Input Harmonic Parameterization Optimized Parameterization

Figure 8: Cutoff of the run time of computing a parameterization

of a mesh with SLIM.

sizes that are common in the respective applications. The detailed
preprocessing timings are provided in Appendix A.

5.1. Geometric Distortion Minimization

Many geometry processing algorithm are based on the minimiza-
tion of energies measuring the geometric distortion of a 2D or 3D
simplicial mesh. We integrated our algorithm in the SLIM frame-
work [RPPSH17] available in the libigl library [JP∗18]. SLIM is a
recent approach to minimize geometric distortion energies which
relies on a proxy function to approximate the Hessian of the dis-
tortion energies. We anecdotally compare the difference of per-
formance on two of the standard examples included in libigl (2D
parametrization and 3D mesh deformation), by using our technique
to generate an optimized kernel for the expression AT DA+B in the
inner loop of the optimization.

2D Parametrization. Parameterization is a common task in com-
puter graphics; the goal is to bijectively “flatten” a disk-like mesh
to the plane while reducing distortion. By optimizing the inner loop
of the optimization with our technique, we gain a 3× speedup on

the runtime of the whole algorithm, as shown in Figure 8. We note
that the algorithm also requires a linear solve, which, in the orig-
inal Eigen/MKL implementation, is not the bottleneck. After our
technique the time for assembly and non-solve computations are
drastically reduced, making the actual solve become the slowest
part of the algorithm.

3D Mesh Deformation. Animations and posing of characters of-
ten relies on handle-based mesh deformation: as the user moves
around a set of anchors, an algorithm deforms the mesh by min-
imizing a physicaly-based distortion energy. By using our system
to optimize the inner optimization loop, the end-to-end speedup is

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

8 X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation

T
im

e
(m

s
)

EIGEN MKL OURS0

10

20

30

40 Solve
Compute
Assemble

EIGEN MKL OURS0

1000

2000
Solve
Compute
Assemble

Surface Mesh
#T = 10 240

Volume Mesh
#T = 48 000

Input Surface Deformed
Surface

Input Volume Deformed
Volume

Figure 9: Cutoff of the run time of computing mesh deformation.

2.67× and 5× when applied to meshes with 10 240 triangles and
48 000 triangles respectively, compared to the original Eigen-based
implementation (Figure 9). Note that this applications is usually in-
teractive, and our speedup allows a single iteration to complete in
0.36 seconds instead of 1.8 seconds, reducing the time the user has
to wait to see a preview of the deformation.

5.2. Optical Flow

Optical flow [HS81] is a common algorithm used in many com-
puter vision tasks. It computes a displacement field that maps the
pixels of one frame to the next. While real-time implementations
are possible using a GPU kernel, in this section we analyze per-
formance running on a CPU, since we leave the extension of our
system to GPUs as a future work. The algorithm involves comput-
ing three differential operators Ex, Ey, and Et which depend on the
brightness Ei, j,k of a pixel i, j for frame k. The operators are ap-
proximations of the brightness derivative with respect to x, y (pixel
position) and t (frame in the video). Then, using these operators
and a user-parameter smoothness control α, it solves a non-linear
system of the form

(α2 +E
2
x)u

i+1
ExEyv = (α2

u
i−ExEt)

(α2 +E
2
y)v

i+1
ExEyu = (α2

v
i−EyEt),

which can be rewritten as Exi+1 = α2xi− b. We use our method
to compute a kernel that takes a pair of images and computes the
sparse matrix E and right-hand side directly (Figure 10). For this
application, since the operators act on a regular grid (i.e., the pixels
of an image), the linear solve dominates the timings, leading to only
1.1× speedup for the full application. Note that an improvement
of 10% is still relevant for such an application, especially if the
algorithm is used to process long video sequences. If we ignore the
solve time, and consider only the computations, our method is 5×
faster than the Eigen implementation.

We note that, even if in theory for every pair of images one would
require one assembly and several solves (i.e., until the iterative pro-
cess xi+1 converges), in practice the iterations are initialized with

T
im

e
(m

s
)

EIGEN OURS0

10

20

30

Solve
Compute
Assemble

EIGEN OURS0

100

200

300

400

Solve
Compute
Assemble

200 × 200 640 × 480

Frame 1 Frame 2 Flow
Small Image

Frame 1 Frame 2 Flow
Large Image

Figure 10: Runtime of optical flow for our algorithm on a small

and large image.

T
im

e
(m

s
)

LIBIGL PMP LIBIGL+EGGS0

10

20

LIBIGL PMP LIBIGL+EGGS0
10
20
30
40
50
60
70
80

#V = 10 160 #T = 20 336 #V = 43 243 #T = 86 482

Figure 11: Time for assembling the cotangent matrix with libigl,

PMP, and using our approach to accelerate the libigl version.

the solution from the previous pair, thus requiring only one iteration
(and one solve) per step.

5.3. Cotangent Matrix Assembly

Our method provides benefits even for algorithms generating sparse
matrices, such as the assembly of the classical cotangent Lapla-
cian matrix (Figure 11). Our method automatically converts the li-
bigl [JP∗18] “cotmatrix” function, which takes as an input the ver-
tices and connectivity of a mesh and returns its cotangent Laplacian
matrix, with a fully optimized kernel. Our method provides a 4×
speedup on a large mesh and 2× on a smaller mesh. Note that the
runtime of automatically using our method on the naïve libigl im-
plementation is slightly higher than the hand-optimized assembly

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation 9

T
im

e
(m

s
)

EIGEN MKL OURS0

10

20

30

40

50 Solve
Compute
Assemble

EIGEN MKL OURS0

100

200

300 Solve
Compute
Assemble

#T = 20 336 #T = 86 482

Input 25 Iteration 50 Iteration 75 Iteration 100 Iteration
Small Mesh, #T = 20 336

Input 25 Iteration 50 Iteration 75 Iteration 100 Iteration
Large Mesh, #T = 86 482

Figure 12: Cutoff of the runtime of implicit Laplacian smoothing.

in PMP [SB20] (5ms vs 2.65ms for the small mesh and 20ms vs
13ms for the large one).

5.4. Smoothing

Implicit bi-Laplacian smoothing [KCVS98, DMSB99] is ubiqui-
tous in geometry processing to remove high-frequency noise from
surface meshes. The algorithm removes noise iteratively by solving
the following linear system:

(LT
ML+wM)p

′ = wMp,

where p are the current vertices, p′ are the unknown smoothed ver-
tices, M is the lumped mass matrix, L is the area-weighted cotan-
gent Laplacian (L = M−1Lw with Lw the cotangent matrix), and w

is a user-controlled parameter deciding the strength of the filter. We
use our method to replace the computation of LT ML+wM, which
changes at every iteration. With a classical Eigen implementation,
the assembly of the linear system matrix has a comparable cost as
the linear system solve, while with our method (and MKL) the bot-
tle neck is the linear solve. EGGS obtains a 2× end-to-end speedup
(1.1× compared to MKL) for a small mesh and 2.2× (1.2× versus
MKL) for a large mesh. If we count only the optimized computa-
tion (i.e., the actual computation of the operator without solve) our
method is 68× and 6.3× faster on average than Eigen and MKL
respectively on the large mesh (Figure 12).

6. Concluding Remarks

We introduced a new paradigm and algorithm to automatically gen-
erate parallel vectorized kernels for algorithms involving sparse
matrix and vector operations, and demonstrated that it can surpass
the performance of commercial libraries on sparse linear algebra

T
im

e
(m

s)

LIBIGL PMP LIBIGL+EGGS EGGS+
MO

0

10

20

LIBIGL PMP LIBIGL+EGGS EGGS+
MO

0
10
20
30
40
50
60
70
80

#V = 10160 #T = 20336 #V = 43243 #T = 86482

Figure 13: Additional manual optimizations (EGGS + MO) can

further reduce the running time.

operations and that it provides practical speedups on geometry pro-
cessing algorithms.

There are three major opportunities to further improve the bene-
fits of this approach: (1) the code generation step could be extended
to target the generation of parallel GPU kernels, thus providing an
automated way to convert existing geometry processing algorithms
to exploit the high parallelism of GPUs; (2) tree construction could
be improved by finding common subexpressions and adding sup-
port for intermediate value computations; and (3) the memory and
runtime could be further optimized to enable processing expres-
sions with many more operands or even dense matrices. Prelimi-
nary experiments for (2) show (Figure 13) that, by manually find-
ing common subexpressions for the case of the cotangent matrix as-
sembly, it would be possible to further speed up the code by a factor
of 4×, becoming faster than the hand-optimized library PMP.

To foster replicability of our results and adoption of our al-
gorithm by the community, we have released the reference im-
plementation of our algorithm and code for all the showcased
applications as an open-source project at https://github.com/
txstc55/EGGS. We hope that the community will integrate this
solution into existing libraries based on Eigen, such as spec-
tra [Qiu20], PolyFEM [SDG∗19], and libigl [JP∗18], or to other
programming languages targeting sparse computation [KKRK∗16,
KKC∗17].

Acknowledgements

This work was supported in part through the NYU IT High
Performance Computing resources, services, and staff exper-
tise. This work was partially supported by the NSF CAREER
award 1652515, the NSF grants IIS-1320635, OAC-1835712, OIA-
1937043, CHS-1908767, CHS-1901091, CNS-1816717, a gift
from Adobe Research, a gift from nTopology, a gift from VMware,
a gift from NVIDIA, and a gift from Advanced Micro Devices, Inc.

References

[ABB∗99] ANDERSON E., BAI Z., BISCHOF C., BLACKFORD S.,
DEMMEL J., DONGARRA J., DU CROZ J., GREENBAUM A., HAM-
MARLING S., MCKENNEY A., SORENSEN D.: LAPACK Users’ Guide,
third ed. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1999. 2

[ABC∗16] ABADI M., BARHAM P., CHEN J., CHEN Z., DAVIS A.,

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

10 X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation

DEAN J., DEVIN M., GHEMAWAT S., IRVING G., ISARD M., KUD-
LUR M., LEVENBERG J., MONGA R., MOORE S., MURRAY D. G.,
STEINER B., TUCKER P., VASUDEVAN V., WARDEN P., WICKE M.,
YU Y., ZHENG X.: Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Conference on Operating Sys-

tems Design and Implementation (Berkeley, CA, USA, 2016), OSDI’16,
USENIX Association, pp. 265–283. 2

[AKV∗14] ANSEL J., KAMIL S., VEERAMACHANENI K., RAGAN-
KELLEY J., BOSBOOM J., O’REILLY U.-M., AMARASINGHE S.:
Opentuner: An extensible framework for program autotuning. In Pro-

ceedings of the 23rd International Conference on Parallel Architec-

tures and Compilation (New York, NY, USA, 2014), PACT ’14, ACM,
pp. 303–316. 2

[ASPR19] AUGUSTINE T., SARMA J., POUCHET L.-N., RODRÍGUEZ

G.: Generating piecewise-regular code from irregular structures. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (New York, NY, USA, 2019), PLDI
2019, Association for Computing Machinery, p. 625âĂŞ639. 3

[BAwCD97] BILMES J., ASANOVIĆ K., WHYE CHIN C., DEMMEL

J.: Optimizing matrix multiply using PHiPAC: a Portable, High-
Performance, ANSI C coding methodology. In Proceedings of Inter-

national Conference on Supercomputing (Vienna, Austria, Jul 1997). 2

[BGMS97] BALAY S., GROPP W. D., MCINNES L. C., SMITH B. F.:
Efficient management of parallelism in object-oriented numerical soft-
ware libraries. In Modern software tools for scientific computing.
Springer, Birkhäuser Boston, 1997, pp. 163–202. 2

[BJKS09] BELTER G., JESSUP E. R., KARLIN I., SIEK J. G.: Automat-
ing the generation of composed linear algebra kernels. In Proceedings of

the Conference on High Performance Computing Networking, Storage

and Analysis (New York, NY, USA, 2009), SC ’09, ACM, pp. 59:1–
59:12. 2

[BLYD12] BYUN J.-H., LIN R., YELICK K. A., DEMMEL J.: Autotun-
ing sparse matrix-vector multiplication for multicore. EECS, UC Berke-

ley, Tech. Rep (2012). 2

[BSL∗16] BERNSTEIN G. L., SHAH C., LEMIRE C., DEVITO Z.,
FISHER M., LEVIS P., HANRAHAN P.: Ebb: A dsl for physical sim-
ulation on cpus and gpus. ACM Trans. Graph. 35, 2 (May 2016). 3

[BW93] BIK A. J., WIJSHOFF H. A.: Compilation techniques for sparse
matrix computations. In Proceedings of the 7th international conference

on Supercomputing (1993), ACM, pp. 416–424. 2

[BW94] BIK A. J., WIJSHOFF H. A.: On automatic data structure se-
lection and code generation for sparse computations. In Languages and

Compilers for Parallel Computing. Springer, 1994, pp. 57–75. 2

[CDKS18] CHESHMI K., DEHNAVI M. M., KAMIL S., STROUT M. M.:
Parsy: Inspection and transformation of sparse matrix computations for
parallelism. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (New York,
NY, USA, 2018), SC ’18, ACM. 2, 5

[CKA18] CHOU S., KJOLSTAD F., AMARASINGHE S.: Format abstrac-
tion for sparse tensor algebra compilers. Proc. ACM Program. Lang. 2,
OOPSLA (Oct. 2018), 123:1–123:30. 3

[CKSD17] CHESHMI K., KAMIL S., STROUT M. M., DEHNAVI M. M.:
Sympiler: Transforming sparse matrix codes by decoupling symbolic
analysis. In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis (New York, NY,
USA, 2017), SC ’17, ACM, pp. 13:1–13:13. 2, 5

[DCDBK∗16] DE CONINCK A., DE BAETS B., KOUROUNIS D., VER-
BOSIO F., SCHENK O., MAENHOUT S., FOSTIER J.: Needles: Toward
large-scale genomic prediction with marker-by-environment interaction.
543–555. 7

[DHP02] DUFF I. S., HEROUX M. A., POZO R.: An overview of the
sparse basic linear algebra subprograms: The new standard from the
blas technical forum. ACM Transaction on Mathematical Software 28, 2
(June 2002), 239–267. 2

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR A. H.: Im-
plicit fairing of irregular meshes using diffusion and curvature flow. In
Proceedings of the 26th Annual Conference on Computer Graphics and

Interactive Techniques (1999), SIGGRAPH âĂŹ99, p. 317âĂŞ324. 9

[DMZ∗17] DEVITO Z., MARA M., ZOLLÖFER M., BERNSTEIN G.,
THEOBALT C., HANRAHAN P., FISHER M., NIESSNER M.: Opt: A
domain specific language for non-linear least squares optimization in
graphics and imaging. ACM Transactions on Graphics 2017 (TOG)

(2017). 3

[Fea88] FEAUTRIER P.: Array expansion. In 2nd International Confer-

ence on Supercomputing (ICS’88) (1988), ACM, pp. 429–441. 2

[Fea91] FEAUTRIER P.: Dataflow analysis of array and scalar references.
International Journal of Parallel Programming 20, 1 (1991), 23–53. 2

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3. http:

//eigen.tuxfamily.org, 2010. 2

[HS81] HORN B. K., SCHUNCK B. G.: Determining optical flow. Arti-

ficial Intelligence 17, 1 (1981), 185 – 203. 8

[Int12] INTEL: Intel math kernel library reference manual. Tech.
rep., 630813-051US, 2012. http://software.intel.com/sites/

products/documentation/hpc/mkl/mklman/mklman.pdf, 2012. 2

[IT88] IRIGOIN F., TRIOLET R.: Supernode partitioning. In Symposium

on Principles of Programming Languages (POPL’88) (San Diego, CA,
January 1988), pp. 319–328. 2

[JP∗18] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 7, 8, 9

[KAKA19] KJOLSTAD F., AHRENS P., KAMIL S., AMARASINGHE S.:
Tensor algebra compilation with workspaces. 180–192. 3

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL H.-P.:
Interactive multi-resolution modeling on arbitrary meshes. In Proceed-

ings of the 25th Annual Conference on Computer Graphics and Interac-

tive Techniques (1998), SIGGRAPH âĂŹ98, p. 105âĂŞ114. 9

[KFS18] KOUROUNIS D., FUCHS A., SCHENK O.: Towards the next
generation of multiperiod optimal power flow solvers. IEEE Transac-

tions on Power Systems PP, 99 (2018), 1–10. 7

[KKC∗17] KJOLSTAD F., KAMIL S., CHOU S., LUGATO D., AMARAS-
INGHE S.: The tensor algebra compiler. Proc. ACM Program. Lang. 1,
OOPSLA (Oct. 2017), 77:1–77:29. 3, 9

[KKRK∗16] KJOLSTAD F., KAMIL S., RAGAN-KELLEY J., LEVIN D.,
SUEDA S., CHEN D., VOUGA E., KAUFMAN D., KANWAR G., MA-
TUSIK W., AMARASINGHE S.: Simit: A language for physical simula-
tion. ACM Trans. Graphics (2016). 3, 9

[KPS97] KOTLYAR V., PINGALI K., STODGHILL P.: A relational ap-
proach to the compilation of sparse matrix programs. In Euro-Par’97

Parallel Processing. Springer, 1997, pp. 318–327. 2

[McN71] MCNAMEE J. M.: Algorithm 408: a sparse matrix package
(part i)[f4]. Communications of the ACM 14, 4 (1971), 265–273. 2

[MCT96] MCKINLEY K. S., CARR S., TSENG C.-W.: Improving data
locality with loop transformations. ACM Transactions on Programming

Languages and Systems (TOPLAS) 18, 4 (1996), 424–453. 2

[MYC∗19] MOHAMMADI M. S., YUKI T., CHESHMI K., DAVIS E. C.,
HALL M., DEHNAVI M. M., NANDY P., OLSCHANOWSKY C.,
VENKAT A., STROUT M. M.: Sparse computation data dependences
simplification for efficient compiler-generated inspectors. In Program-

ming Languages Design and Implementation (PLDI) (2019). 2

[NBS∗15] NELSON T., BELTER G., SIEK J. G., JESSUP E., NORRIS B.:
Reliable generation of high-performance matrix algebra. ACM Trans.

Math. Softw. 41, 3 (June 2015), 18:1–18:27. 2

[Phe08] PHEATT C.: IntelÂő threading building blocks. J. Comput. Sci.

Coll. 23, 4 (Apr. 2008), 298. 4

[PMB∗19] PRADELLE B., MEISTER B., BASKARAN M., SPRINGER J.,
LETHIN R.: Polyhedral optimization of tensorflow computation graphs.
In Programming and Performance Visualization Tools (Cham, 2019),

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

X. Tang & T. Schneider & S. Kamil & A. Panda & J. Li & D. Panozzo / Sparsity-Specific Code Generation 11

Bhatele A., Boehme D., Levine J. A., Malony A. D., Schulz M., (Eds.),
Springer International Publishing, pp. 74–89. 2

[PS99] PUGH W., SHPEISMAN T.: Sipr: A new framework for gener-
ating efficient code for sparse matrix computations. In Languages and

Compilers for Parallel Computing. Springer, 1999, pp. 213–229. 2

[Qiu20] QIU Y.: Spectra, 2020. URL: https://spectralib.org. 9

[RP18] RODRÍGUEZ G., POUCHET L.-N.: Polyhedral modeling of im-
mutable sparse matrices. In Proceedings of the Eigth International Work-

shop on Polyhedral Compilation Techniques (2018), ACM. 3

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Trans. Graph.

36, 2 (Apr. 2017). 7

[San10] SANDERSON C.: Armadillo: An Open Source C++ Linear Alge-

bra Library for Fast Prototyping and Computationally Intensive Experi-

ments. Tech. rep., NICTA, Sept. 2010. 2

[SB20] SIEGER D., BOTSCH M.: The polygon mesh processing library,
2020. http://www.pmp-library.org. 9

[SDG∗19] SCHNEIDER T., DUMAS J., GAO X., ZORIN D., PANOZZO

D.: Polyfem. https://polyfem.github.io/, 2019. 9

[SHO18] STROUT M. M., HALL M., OLSCHANOWSKY C.: The
sparse polyhedral framework: Composing compiler-generated inspector-
executor code. Proceedings of IEEE 106, 11 (Nov 2018), 1921–1934.
2

[TW67] TINNEY W. F., WALKER J. W.: Direct solutions of sparse net-
work equations by optimally ordered triangular factorization. Proceed-

ings of the IEEE 55, 11 (1967), 1801–1809. 2

[VCKS17] VERBOSIO F., CONINCK A. D., KOUROUNIS D., SCHENK

O.: Enhancing the scalability of selected inversion factorization algo-
rithms in genomic prediction. Journal of Computational Science 22,
Supplement C (2017), 99 – 108. 7

[VDWCV11] VAN DER WALT S., COLBERT S. C., VAROQUAUX G.:
The numpy array: a structure for efficient numerical computation. Com-

puting in Science & Engineering 13, 2 (2011), 22–30. 2

[VDY05] VUDUC R., DEMMEL J. W., YELICK K. A.: OSKI: A library
of automatically tuned sparse matrix kernels. Journal of Physics: Con-

ference Series 16, 1 (2005), 521+. 2

[VHS15] VENKAT A., HALL M., STROUT M.: Loop and data transfor-
mations for sparse matrix code. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (2015), PLDI 2015, pp. 521–532. 2

[VZT∗18] VASILACHE N., ZINENKO O., THEODORIDIS T., GOYAL

P., DEVITO Z., MOSES W., VERDOOLAEGE S., ADAMS A., COHEN

A.: Tensor comprehensions: Framework-agnostic high-performance ma-
chine learning abstractions. 2

[WD98] WHALEY R. C., DONGARRA J.: Automatically tuned linear al-
gebra software. In SuperComputing 1998: High Performance Network-

ing and Computing (1998). 2

[WL91] WOLF M. E., LAM M. S.: A data locality optimizing algorithm.
SIGPLAN Not. 26, 6 (May 1991), 30–44. 2

[Wol82] WOLFE M. J.: Optimizing Supercompilers for Supercomputers.
PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 1982. AAI8303027. 2

[WZZY13] WANG Q., ZHANG X., ZHANG Y., YI Q.: Augem: Auto-
matically generate high performance dense linear algebra kernels on x86
cpus. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis (New York, NY,
USA, 2013), SC ’13, ACM, pp. 25:1–25:12. 2

Appendix A: Additional Statistics

We provide in Table 2 detailed statistics on EGGS preprocessing
time and size of the generated binaries for all the experiments in the

Name NNZ Rows SE (ms) CG (ms) CC (ms) Size MKL (ms)

AB 5 102 1.269 2.029 2317.67 313K 24.803
AB 5 103 17.409 11.881 2223.02 308K 4.944
AB 5 104 186.002 112.479 1935.62 307K 5.152
AB 5 105 2839.94 1347.51 1950.49 307K 34.835
AB 5 106 34622.4 14472.4 1957.61 307K 271.076
ATDA 5 102 3.828 8.017 4585.26 352K 31.555
ATDA 5 103 36.904 24.464 6138.41 365K 4.687
ATDA 5 104 464.985 150.737 6829.11 370K 8.584
ATDA 5 105 5308.46 1939.52 8845.97 395K 43.899
ATDA 5 106 59186.3 20757.5 9957.09 400K 713.861
ATA 5 102 2.941 5.066 4000.36 348K 23.53
ATA 5 103 31.404 15.538 5045.37 361K 4.248
ATA 5 104 355.607 99.213 5505.74 366K 6.377
ATA 5 105 4404.83 1160.75 6744.52 383K 35.301
ATA 5 106 49235 14634.7 7368.92 388K 413.234
AB 15 102 6.897 15.154 4023.42 348k 20.658
AB 15 103 112.489 119.418 2577.31 315K 4.409
AB 15 104 1704.82 1201.37 2398.06 313K 8.512
AB 15 105 19605.3 12002.8 2261.46 308K 66.684
AB 15 106 237432 136062 3324.36 308K 1432.21
ATDA 15 102 22.841 81.828 14547.7 436K 24.22
ATDA 15 103 280.794 227.213 21200.9 470K 4.831
ATDA 15 104 3535.24 1767.95 24607.4 485K 12.227
ATDA 15 105 38018.8 18244.4 32191.2 527K 132.73
ATDA 15 106 432281 197296 39394.1 560K 2661.51
ATA 15 102 21.237 42.591 10856.7 416K 21.62
ATA 15 103 234.147 127.418 14032 442K 4.692
ATA 15 104 3100.96 1005.24 16008 457K 9.564
ATA 15 105 34018.2 12873.5 20364.6 491K 113.682
ATA 15 106 363015 134313 23440.8 512K 1532.9

Name NNZ Rows SE (ms) CG (ms) CC (ms) Size MKL (ms)

COMP1 5 103 132.213 215.542 29867.5 766K 0.812
COMP1 5 104 1492.24 1235.22 11230.6 463K 3.915
COMP1 5 105 16618.4 13216.1 7226.39 398K 50.539
COMP2 5 103 139.362 103.94 5074.85 373K 24.012
COMP2 5 104 1959.66 1061.75 3159.91 328K 15.275
COMP2 5 105 21366.6 11054.4 2828.13 321K 47.928
COMP3 5 103 199.822 1314.45 89446.5 1.8M 20.944
COMP3 5 104 2466.83 2009.59 27896.1 736K 5.42
COMP3 5 105 26054.3 21829 13611.9 321K 47.992
COMP1 15 103 712.933 97926 613082 11M 2.023
COMP1 15 104 10319.9 49890.3 74354.1 1.7M 11.956
COMP1 15 105 124195 246783 32619.3 820K 210.089
COMP2 15 103 2928.32 767785 1208650 15M 28.635
COMP2 15 104 48309 66660.7 17318.4 587K 50.592
COMP2 15 105 698976 615200 8086.12 380K 478.521
COMP3 15 103 1243.17 3128920 10186400 59M 24.389
COMP3 15 104 18157.8 295109 347103 6.0M 11.842
COMP3 15 105 211191 854873 103518 2.0M 153.984

Name NNZ Rows SE (ms) CG (ms) CC (ms) Size MKL (ms)

SLIM1 M1 13 51810 9667.16 4898.7 25293.6 449K 53.139
SLIM1 M2 13 827778 155741 74344 25304.7 449K 1076.34
SLIM2 13 10402 1725.43 706.084 7436.72 354K 11.287
SLIM3 41 27783 63873 41503.9 44648.2 560K 194.368
SMOOTH1 20 10160 718.669 271.362 6893.55 381K 19.341
SMOOTH2 20 43243 3369.61 1208.18 6309.26 376K 35.101
FLOW1 1.5 80000 NA 1017.848 7688.23 667K NA
FLOW2 1.5 614400 NA 8122.62 6844.6 667K NA
COTMAT1 7 10160 NA 54826.6 309960 1.9M NA
COTMAT2 6 43243 NA 96318.8 240015 1.5M NA

Table 2: Additional statistics. From left to right: name of the ex-

periment, average number of non zeros per row (NNZ), number

of rows, symbolic execution time (SE), code generation time (CG),

compilation time (CC), size of the generated binary, MKL prepara-

tion time.

paper. We also report the corresponding preparation time for MKL.
The table is divided into 3 parts: simple expressions (Section 4.1),
composite expressions (Section 4.2), and applications (Section 5).

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

